The Auslander-Reiten translation in submodule categories
نویسندگان
چکیده
منابع مشابه
Auslander-Reiten theory revisited
We recall several results in Auslander-Reiten theory for finite-dimensional algebras over fields and orders over complete local rings. Then we introduce n-cluster tilting subcategories and higher theory of almost split sequences and Auslander algebras there. Several examples are explained. Mathematics Subject Classification (2000). Primary 16G70; Secondary 16E30, 16G30.
متن کاملAuslander-reiten Sequences on Schemes
Let X be a smooth projective scheme of dimension d ≥ 1 over the field k, and let C be an indecomposable coherent sheaf on X . Then there is an Auslander-Reiten sequence in the category of quasi-coherent sheaves on X , 0 → (ΣC)⊗ ω −→ B −→ C → 0. Here ΣC is the (d−1)’st syzygy in a minimal injective resolution of C, and ω is the dualizing sheaf of X . 0. Introduction This note shows that Auslande...
متن کاملThe Auslander-reiten Translate on Monomial Rings
For t in N, E.Miller has defined a category of positively t-determined modules over the polynomial ring S in n variables. We consider the AuslanderReiten translate, Nt, on the (derived) category of such modules. A monomial ideal I is t-determined if each generator x has a ≤ t. We compute the multigraded cohomology and betti spaces of N k t (S/I) for every iterate k and also the S-module structu...
متن کاملThe Auslander-Reiten Conjecture for Group Rings
This paper studies the vanishing of $Ext$ modules over group rings. Let $R$ be a commutative noetherian ring and $ga$ a group. We provide a criterion under which the vanishing of self extensions of a finitely generated $Rga$-module $M$ forces it to be projective. Using this result, it is shown that $Rga$ satisfies the Auslander-Reiten conjecture, whenever $R$ has finite global dimension and $ga...
متن کاملAlgebraic Modules and the Auslander–Reiten Quiver
Recall that an algebraic module is aKG-module that satisfies a polynomial with integer coefficients, with addition and multiplication given by direct sum and tensor product. In this article we prove that non-periodic algebraic modules are very rare, and that if the complexity of an algebraic module is at least 3, then it is the only algebraic module on its component of the (stable) Auslander–Re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2008
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-07-04183-9